Introduction

Table 1.1. *Titles of the volumes in the Heliophysics series. References in this volume to chapters in other volumes use the numbering as in this table.*

<table>
<thead>
<tr>
<th>Volume</th>
<th>Title and focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Plasma physics of the local cosmos</td>
</tr>
<tr>
<td>II</td>
<td>Space storms and radiation: causes and effects</td>
</tr>
<tr>
<td>III</td>
<td>Evolving solar activity and the climates of space and Earth</td>
</tr>
<tr>
<td>IV</td>
<td>Active stars, their astrospheres, and impacts on planetary environments</td>
</tr>
<tr>
<td>V*</td>
<td>Space weather and society</td>
</tr>
</tbody>
</table>
Table 1.2. Chapters and their authors in the Heliophysics series sorted by theme (continued on the next page), not showing introductory chapters.

<table>
<thead>
<tr>
<th>Universal and fundamental processes, diagnostics, and methods</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.2. Introduction to heliophysics</td>
<td>T. Bogdan</td>
</tr>
<tr>
<td>I.3. Creation and destruction of magnetic field</td>
<td>M. Rempel</td>
</tr>
<tr>
<td>I.4. Magnetic field topology</td>
<td>D. Longcope</td>
</tr>
<tr>
<td>I.5. Magnetic reconnection</td>
<td>T. Forbes</td>
</tr>
<tr>
<td>I.6. Structures of the magnetic field</td>
<td>M. Moldwin et al.</td>
</tr>
<tr>
<td>II.3 In-situ detection of energetic particles</td>
<td>G. Gloeckler</td>
</tr>
<tr>
<td>II.4 Radiative signatures of energetic particles</td>
<td>T. Bastian</td>
</tr>
<tr>
<td>II.7 Shocks in heliophysics</td>
<td>M. Opher</td>
</tr>
<tr>
<td>II.8 Particle acceleration in shocks</td>
<td>D. Krauss-Varban</td>
</tr>
<tr>
<td>II.9 Energetic particle transport</td>
<td>J. Giacalone</td>
</tr>
<tr>
<td>II.11 Energization of trapped particles</td>
<td>J. Green</td>
</tr>
<tr>
<td>IV.11 Dusty plasmas</td>
<td>M. Horányi</td>
</tr>
<tr>
<td>IV.12 Energetic-particle environments in the solar system</td>
<td>N. Krupp</td>
</tr>
<tr>
<td>IV.13 Heliophysics with radio scintillation and occultation</td>
<td>M. Bisi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stars, their planetary systems, planetary habitability, and climates</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>III.3 Formation and early evol. of stars and proto-planetary disks</td>
<td>L. Hartmann</td>
</tr>
<tr>
<td>III.4 Planetary habitability on astronomical time scales</td>
<td>D. Brownlee</td>
</tr>
<tr>
<td>III.11 Astrophysical influences on planetary climate systems</td>
<td>J. Beer</td>
</tr>
<tr>
<td>III.12 Assessing the Sun-climate relationship in paleoclimate records</td>
<td>T. Crowley</td>
</tr>
<tr>
<td>III.14 Long-term evolution of the geospace climate</td>
<td>J. Sojka</td>
</tr>
<tr>
<td>III.15 Waves and transport processes in atmosph. and oceans</td>
<td>R. Walterscheid</td>
</tr>
<tr>
<td>IV.5 Characteristics of planetary systems</td>
<td>D. Fischer & J. Wang</td>
</tr>
<tr>
<td>IV.7 Climates of terrestrial planets</td>
<td>D. Brain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The Sun, its dynamo, and its magnetic activity; past, present, and future</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.8. The solar atmosphere</td>
<td>V. Hansteen</td>
</tr>
<tr>
<td>II.5 Observations of solar and stellar eruptions, flares, and jets</td>
<td>H. Hudson</td>
</tr>
<tr>
<td>II.6 Models of coronal mass ejections and flares</td>
<td>T. Forbes</td>
</tr>
<tr>
<td>III.2 Long-term evolution of magnetic activity of Sun-like stars</td>
<td>C. Schrijver</td>
</tr>
<tr>
<td>III.5 Solar internal flows and dynamo action</td>
<td>M. Miesch</td>
</tr>
<tr>
<td>III.6 Modeling solar and stellar dynamos</td>
<td>P. Charbonneau</td>
</tr>
<tr>
<td>III.10 Solar irradiance: measurements and models</td>
<td>J. Lean & T. Woods</td>
</tr>
<tr>
<td>IV.2 Solar explosive activity throughout the evol. of the solar system</td>
<td>R. Osten</td>
</tr>
<tr>
<td>Chapter No.</td>
<td>Chapter Title</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>I.7</td>
<td>Turbulence in space plasmas</td>
</tr>
<tr>
<td>I.9</td>
<td>Stellar winds and magnetic fields</td>
</tr>
<tr>
<td>III.8</td>
<td>The structure and evolution of the 3D solar wind</td>
</tr>
<tr>
<td>III.9</td>
<td>The heliosphere and cosmic rays</td>
</tr>
<tr>
<td>IV.3</td>
<td>Astrospheres, stellar winds, and the interst. medium</td>
</tr>
<tr>
<td>IV.4</td>
<td>Effects of stellar eruptions throughout astrospheres</td>
</tr>
<tr>
<td>I.10</td>
<td>Fundamentals of planetary magnetospheres</td>
</tr>
<tr>
<td>I.11</td>
<td>Solar-wind magnetosphere coupling</td>
</tr>
<tr>
<td>I.13</td>
<td>Comparative planetary environments</td>
</tr>
<tr>
<td>II.10</td>
<td>Energy conversion in planetary magnetospheres</td>
</tr>
<tr>
<td>III.7</td>
<td>Planetary fields and dynamos</td>
</tr>
<tr>
<td>IV.6</td>
<td>Planetary dynamos: updates and new frontiers</td>
</tr>
<tr>
<td>IV.10</td>
<td>Moons, asteroids, and comets interact. with their surround</td>
</tr>
<tr>
<td>I.12</td>
<td>On the ionosphere and chromosphere</td>
</tr>
<tr>
<td>II.12</td>
<td>Flares, CMEs, and atmospheric responses</td>
</tr>
<tr>
<td>III.13</td>
<td>Ionospheres of the terrestrial planets</td>
</tr>
<tr>
<td>III.16</td>
<td>Solar variability, climate, and atmos. photochemistry</td>
</tr>
<tr>
<td>IV.8</td>
<td>Upper atmospheres of the giant planets</td>
</tr>
<tr>
<td>IV.9</td>
<td>Aeronomy of terrestrial upper atmospheres</td>
</tr>
<tr>
<td>II.2</td>
<td>Introduction to space storms and radiation</td>
</tr>
<tr>
<td>II.13</td>
<td>Energetic particles and manned spaceflight</td>
</tr>
<tr>
<td>II.14</td>
<td>Energetic particles and technology</td>
</tr>
<tr>
<td>V.2</td>
<td>Space weather: impacts, mitigation, forecasting</td>
</tr>
<tr>
<td>V.3</td>
<td>Commercial space weather in response to societal needs</td>
</tr>
<tr>
<td>V.4</td>
<td>The impact of space weather on the electric power grid</td>
</tr>
<tr>
<td>V.5</td>
<td>Radio waves for communication and ionospheric probing</td>
</tr>
</tbody>
</table>