Magnetic Reconnection and Energy Conversions

A. Bhattacharjee

Center for Heliophysics

Department of Astrophysical Sciences

Princeton Plasma Physics Laboratory

Princeton University

Acknowledgement: M. Yamada, PPPL

LWS Heliophysics Summer School, July 25-August 3, 2016
What is Magnetic Reconnection?

If a plasma is perfectly conducting, that is, it obeys the ideal Ohm’s law,

$$\mathbf{E} + \mathbf{v} \times \mathbf{B} / c = 0$$

\mathbf{B}-lines are frozen in the plasma, and no reconnection occurs.

Fig. 1.6. Magnetic flux conservation: if a curve C_1 is distorted into C_2 by plasma motion, the flux through C_1 at t_1 equals the flux through C_2 at t_2.

Fig. 1.7. Magnetic field-line conservation: if plasma elements P_1 and P_2 lie on a field line at time t_1, then they will lie on the same line at a later time t_2.
Magnetic Reconnection: Working Definition

Departures from ideal behavior, represented by

\[\mathbf{E} + \mathbf{v} \times \mathbf{B} / c = \mathbf{R}, \quad \nabla \times \mathbf{R} \neq 0 \]

break ideal topological invariants, allowing field lines to break and reconnect.

In the generalized Ohm’s law for weakly collisional or collisionless plasmas, \(\mathbf{R} \) contains resistivity, Hall current, electron inertia and pressure.
Magnetic Reconnection

Before reconnection After reconnection

- Topological rearrangement of magnetic field lines
- Magnetic energy \Rightarrow Kinetic energy
Example of Topological Change: Magnetic Island Formation

FIG. 1. (a) The topology of field lines in the Harris equilibrium $B = B_0 \tanh(z/a)$. (b) The topology of field lines when the perturbation $b = b \sin(kz)z$ is imposed on the Harris equilibrium.
Courtesy: J. Burch and J. Drake, MMS Mission
A Coronal Mass Ejection

Image of a large eruption from the Sun when a large clump of solar mass is ejected into space, viewed from the satellite SOHO. On the scale of the image to the right, the Earth is the size of this blue sphere.

Image courtesy of SOHO.
Magnetic reconnection layers in the magnetosphere

Data is available to evaluate inventory of energy flows
The Sweet-Parker Model for Magnetic Reconnection

Assume;
- 2D
- Steady-state
- Incompressibility
- Classical Spitzer resistivity

\[
\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \frac{\eta}{\mu_0} \nabla^2 \mathbf{B} \quad \Rightarrow \quad V_{in} B = \frac{\eta_{Spitz}}{\mu_0} \frac{B}{\delta}
\]

Mass conservation:
\[
V_{in} L \approx V_{out} \delta
\]

Pressure balance:
\[
\frac{1}{2} \rho V_{out}^2 \approx \frac{B^2}{2 \mu_0} \Rightarrow V_{out} \approx V_A
\]

In solar flares, \(\tau_{SP} \sim 1 \) year \(\gg \tau_{reconn} \)
Q. Why is Sweet-Parker reconnection so slow?
A. Geometry

Conservation relations of mass, energy, and flux

\[V_{\text{in}} L = V_{\text{out}} \delta, \quad V_{\text{out}} = V_A \]

\[V_{\text{in}} = \frac{\delta}{L} V_A, \quad \frac{\delta}{L} = S^{-1/2} \]

Petschek [1964]

Geometry of reconnection layer: X-point
Length \(\Delta \) (\(\ll L \)) is of the order of the width \(\delta \)

\[\tau_{PK} = \tau_A \ln S \]

Solar flares: \(\tau_{PK} \sim 10^2 \text{s} \)
Computational Tests of the Petschek Model

Conclusions

- Petschek model is not realizable in high-S plasmas, unless the resistivity is locally strongly enhanced at the X-point.
- In the absence of such anomalous enhancement, the reconnection layer evolves dynamically to form Y-points and realize a Sweet-Parker regime.
2D coronal loop: high-Lundquist number resistive MHD simulation

 Flux Function

 T = 0

 Flux Function time=30

 T = 30

 [Ma, Ng, Wang, and Bhattacharjee 1995]
Impulsive Reconnection: The Onset/Trigger Problem

Dynamics exhibits an impulsiveness, that is, a sudden change in the time-derivative of the reconnection rate. The magnetic configuration evolves slowly for a long period of time, only to undergo a sudden dynamical change over a much shorter period of time. Dynamics is characterized by the formation of near-singular current sheets which need to be resolved in computer simulations: a classic multi-scale problem coupling large scales to small.

Examples

Magnetospheric substorms
Impulsive solar/stellar flares
Substorm Onset: Where does it occur?
Substorm Onset: Auroral Bulge

- Formed close to the midnight sector, and characterized by rapid poleward motion.
- A sudden, intense bulge in the auroral oval signals the start of an auroral substorm.
Substorm Onset: When does it occur?

(Ohtani et al., 1992)
Generalized Ohm’s law

What’s really important?

\[E = -v_i \times B - \frac{m_e}{e} \frac{d v_e}{d t} - \frac{1}{en_e} \nabla \cdot \bar{P}_e + \frac{1}{en_e} J \times B + \eta_e J \]

(i) \quad (ii) \quad (iii) \quad (iv) \quad (v)

\[
(i) \quad \frac{v B}{\eta_e B / \mu_0 \ell} = \frac{\ell v \mu_0}{\eta_e} \equiv R_m \\
(ii) \quad \frac{m_e v B / \mu_0 e^2 n_e \ell^2}{m_e / \mu_0 e^2 n_e} = \frac{\ell^2}{m_e} = \left(\frac{\ell}{c/\omega_{pe}} \right)^2 \\
(iii) \quad \frac{v B}{p_e / en_e \ell} = \frac{v \ell}{k_B T / eB} = \left(\frac{v}{c_s} \right) \left(\frac{\ell}{\rho_i} \right) \\
(iv) \quad \frac{B^2 / \mu_0 en_e \ell}{B / \mu_0 en_e} = \frac{v \ell}{B / \mu_0 en_e} = \left(\frac{v}{c/\omega_{pi}} \right) \\
(v) \quad \frac{\eta_e B / \mu_0 \ell}{\eta_e} = \frac{\ell v \mu_0}{\eta_e} \equiv R_m
\]

Importance of term depends on length scale of solution

On large scales plasma is ideal conductor*

* except where \(B=0 \)
Hall MHD (or Extended MHD) Model and the Generalized Ohm’s Law

In high-S plasmas, when the width of the thin current sheet (Δ_η) satisfies

$$\Delta_\eta < c/\omega_{pi} \quad \text{(or } \rho_s = \sqrt{\beta c/\omega_{pi}} \text{ if there is a guide field)}$$

“collisionless” terms in the generalized Ohm’s law cannot be ignored.

Generalized Ohm’s law (dimensionless form)

$$E + v \times B = \frac{1}{S} J + d_e^2 \frac{dJ}{dt} + \frac{d_i}{n} (J \times B - \nabla p_e)$$

Electron skin depth
$$d_e = L^{-1}(c/\omega_{pe})$$

Ion skin depth
$$d_i = L^{-1}(c/\omega_{pi})$$

Electron beta
$$\beta_e$$
Onset of fast reconnection in large, high-Lundquist-number systems

• As the original current sheet thins down, it will inevitably reach kinetic scales, described by a generalized Ohm’s law (including Hall current and electron pressure gradient).

• A criterion has emerged from Hall MHD (or two-fluid) models, and has been tested carefully in laboratory experiments (MRX at PPPL, VTF at MIT). The criterion is:
 \[\delta_{SP} < d_i \] (Ma and Bhattacharjee 1996, Cassak et al. 2005) or \[\delta_{SP} < \rho_s \] in the presence of a guide field (Aydemir 1992; Wang and Bhattacharjee 1993; Kleva, Drake and Waelbroeck 1995)
Forced Magnetic Reconnection Due to Inward Boundary Flows

Magnetic field

\[B = \hat{x}B_P \tanh \frac{z}{a} + \hat{z}B_T \]

Inward flows at the boundaries

\[v = \mp V_0 (1 + \cos kx) \hat{y}, \quad \Delta' < 0 \]

Two simulations: Resistive MHD versus Hall MHD [Ma and Bhattacharjee 1996]

For other perspectives, with similar conclusions, see Grasso et al. (1999) Dorelli and Birn (2003), Fitzpatrick (2004), Cassak et al. (2005), Simakov and Chacon (2008), Malyshkin (2008)
\[d \ln \psi / dt \]

\[J_z \]

\[\ldots \text{Hall} \]

\[\ldots \text{Resistive} \]
Field lines

Electron flows

Ion current density

Electron current density
Transition from Collisional to Collisionless Regimes in MRX

Fig. 2: Comparison of neutral sheet configuration described by measured magnetic field vectors and flux counters for high (collisional) and low density cases; (a) Collisional regime ($\lambda_{mfp} \sim 1\text{mm} << \delta$); (b) Nearly collisionless regime ($\lambda_{mfp} \sim 1\text{cm} \sim \delta$). Out-of-plane fields are depicted by the color codes ranged $-50 \text{G} < B_t < 50 \text{G}$.
Linkage between space and laboratory plasmas

<table>
<thead>
<tr>
<th>System</th>
<th>L (cm)</th>
<th>B (G)</th>
<th>$d_i = c/\omega_{pi}$ (cm)</th>
<th>δ_{sp} (cm)</th>
<th>d_i/δ_{sp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRX</td>
<td>10</td>
<td>100-500</td>
<td>1-5</td>
<td>0.1-5</td>
<td>.2-100</td>
</tr>
<tr>
<td>Tokamak</td>
<td>100</td>
<td>10^4</td>
<td>10</td>
<td>0.1</td>
<td>100</td>
</tr>
<tr>
<td>Magnetosphere</td>
<td>10^9</td>
<td>10^{-3}</td>
<td>10^7</td>
<td>10^4</td>
<td>1000</td>
</tr>
<tr>
<td>Solar flare</td>
<td>10^9</td>
<td>100</td>
<td>10^4</td>
<td>10^2</td>
<td>100</td>
</tr>
<tr>
<td>ISM</td>
<td>10^{18}</td>
<td>10^{-6}</td>
<td>10^7</td>
<td>10^{10}</td>
<td>0.001</td>
</tr>
<tr>
<td>Proto-star</td>
<td></td>
<td></td>
<td>$d_i/\delta_{sp} >> 1$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$$d_i/\delta_{sp} \sim 5(\lambda_{mfp}/L)^{1/2}$$
2D Hall-MHD Simulation
(Ma and Bhattacharjee, 1998)
Magnetospheric Multiscale Mission

- The MMS Mission science will be conducted by the SMART (Solving Magnetospheric Acceleration, Reconnection and Turbulence) Instrument Suite Science Team and a group of three Interdisciplinary Science (IDS) teams.
- Launched 2015.

http://mms.space.swri.edu

(Courtesy: J. Burch, SWRI)
Plasmoid Instability of *Large-Scale* Current Sheets
Sweet-Parker (Sweet 1958, Parker 1957)

Geometry of reconnection layer : Y-points (Syrovatsky 1971)

Length of the reconnection layer is of the order of the system size \(\gg \) width \(\Delta \)

Reconnection time scale

\[
\tau_{SP} = \left(\tau_A \tau_R\right)^{1/2} = S^{1/2} \tau_A
\]

Solar flares: \(S \sim 10^{12}, \quad \tau_A \sim 1s \)

\[\Rightarrow \tau_{SP} \sim 10^6 s \quad \text{Too long!}\]
Fast Reconnection in Large Systems

- Extended thin current sheets of high Lundquist number are unstable to a super-Alfvenic tearing instability (Loureiro et al. 2007), which we call the “plasmoid instability,” because it generates a large number of plasmoids.

- In the nonlinear regime, the reconnection rate becomes nearly independent of the Lundquist number, and is much larger than the Sweet-Parker rate.
The thin current sheet is explosively stable if we exceed a critical Lundquist number, \(S_c \) forming, ejecting, and coalescing a hierarchy of plasmoids.

Bhattacharjee et al. 2009, Huang and Bhattacharjee 2010, Uzdensky et al. 2010
A little history

• Secondary tearing instability of high-S current sheet has been known for some time (Bulanov et al. 1979, Lee and Fu 1986, Biskamp 1986, Matthaeus and Lamkin 1986, Yan et al. 1992, Shibata and Tanuma 2001), but its precise scaling properties were determined only recently.

• The instability has been studied recently nonlinearly in fluid (Lapenta 2008, Cassak et al. 2009; Samtaney et al. 2009) as well as fully kinetic studies with a collision operator (Daughton et al. 2009).
Reconnection Time of 25% of Initial Flux

\[\left\langle \frac{1}{V_A B} \frac{d\psi}{dt} \right\rangle \approx 0.01 \]

\[\left\langle u_i \right\rangle \approx 0.01 V_A \]
Heuristic Scaling Argument Based on Marginal Stability

- Cascade to smaller scales will stop when local current sheets become stable to the plasmoid instability.
- New plasmoids are generated when local current sheets exceed a critical length.
- Consider the reconnection layer as a chain of plasmoids connected by marginally stable current sheets. For a critical Lundquist number S_c:
 - Critical length $L_c \sim S_c \eta / V_A \sim LS_c / S$
 - Number of plasmoids $n_p \sim L / L_c \sim S / S_c$
 - Current sheet with $\delta_c \sim L_c / S_c^{1/2} \sim LS_c^{1/2} / S$
 - Current density $J \sim B / \delta_c \sim BS / LS_c^{1/2}$
 - Reconnection rate $\sim \eta J \sim \eta B / \delta_c \sim BV_A / S_c^{1/2}$, which is independent of S
Parameter Space

A: \(S = 5 \times 10^5, d_i = 4 \times 10^{-4} \)
B: \(S = 5 \times 10^5, d_i = 2 \times 10^{-4} \)
C: \(S = 5 \times 10^5, d_i = 10^{-4} \)
D: \(S = 5 \times 10^5, d_i = 0 \)
Reconnection Rate

The diagram illustrates the reconnection rate over time for different runs labeled as Run A, Run B, Run C, and Run D. The x-axis represents time (t) ranging from 0 to 3, while the y-axis shows the rate of change (dψ/dt) ranging from 0 to 0.04. Each run shows distinct patterns with peaks and troughs indicating variations in reconnection rate.
Run A, global configuration at late time
Largest 2D Hall MHD simulation to date

Run B, resistive Hall

Daughton et al. (2009), PIC

Largest 2D Hall MHD simulation to date
Observations of energetic electrons within magnetic islands

e bursts & bipolar Bz & Ne peaks
~10 islands within 10 minutes
Reconnection Rate Comparison

- 2D and 3D plasmoid-dominated reconnection achieve comparable, faster than Sweet-Parker, reconnection rate.
- 3D reconnection is measured with the mean field
 \[\bar{B} \equiv \frac{1}{L_z} \int B \, dz. \]
Energy Conversions: Laboratory Experiment (MRX, PPPL)

Experimental set-up

- Helium discharge
- IDSP to measure T_i
- $\lambda_{mfp,e} \geq \frac{c}{\omega_{pi}} > \delta_{CS} (~2\text{cm})$
Electron dynamics and electron heating in MRX

\[\mathbf{j} = \text{Curl} \mathbf{B}, \quad \mathbf{V}_e = \frac{\mathbf{j}_e}{n_e} \]

Electron gain energy by \(E_y \)

- Energy deposition occurs very near the X-point.
- The electron heating seen in wider region through heat conduction.

\[j_{\perp} E_{\perp} \gg j_{\parallel} E_{\parallel} \]

The physics of the high energy deposition rate is not yet resolvd.
Ion acceleration and heating in the reconnection layer

Field Lines, Potential Profile, and Ion Flow Vectors

Ion heating is attributed to re-magnetization of accelerated ions
Measurement of energy inventory in MRX

Changes in energy enclosed in the volume

Incoming Fluxes

Outgoing Fluxes

Birn and Hesse, 2005

• Energy transport equation:

$$\frac{\partial}{\partial t} \left[\frac{B^2}{2\mu_0} + \sum_{s=\epsilon,i} \left(\frac{3}{2} n_s T_s + \frac{\rho}{2} V_s^2 \right) \right] + \nabla \cdot \left[\tilde{S} + \sum_{s=\epsilon,i} \left(\frac{5}{2} n_s T_s \tilde{V}_s + \frac{\rho}{2} V_s^2 \tilde{V}_s \right) + q_s \right] = 0$$
Inventory of Energy

Magnetic energy inflow rate
1.0 ± 0.1

Magnetic energy outflow rate
0.49 ± 0.05
 - MHD component
 0.22 ± 0.02
 - Hall-field component
 0.27 ± 0.03

Energy deposition rate to electrons
0.18 ± 0.04
 - Change of thermal energy
 0.14 ± 0.05
 - Energy loss rate (Conduction, radiation)
 0.08 ± 0.04

Energy deposition rate to ions
0.37 ± 0.07
 - Change of flow energy
 0.07 ± 0.02
 - Change of thermal energy
 0.17 ± 0.05
 - Energy loss rate (Conduction, neutrals)
 ≤ 0.16

Yamada et al, Nature Communications (2014)
MRX data is compared with simulations and space data

<table>
<thead>
<tr>
<th></th>
<th>Magnetic energy Inflow</th>
<th>Magnetic Energy outflow rate</th>
<th>Energy deposition to ions</th>
<th>Energy deposition to electrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRX Data</td>
<td>1.0</td>
<td>0.45</td>
<td>0.35</td>
<td>0.20</td>
</tr>
<tr>
<td>Numerical simulation</td>
<td>1.0</td>
<td>0.42</td>
<td>0.34</td>
<td>0.22</td>
</tr>
<tr>
<td>Magnetotail data (Eastwood)</td>
<td>1.0</td>
<td>0.4</td>
<td>0.39</td>
<td>0.18</td>
</tr>
</tbody>
</table>

- Enthalpy flux dominates in the down flow region
- Magnetic energy outflow substantial

Energy deposition to ions is generally larger than to electrons. With the electrons’ heat transport loss is larger than ions’,
=> \(T_i \gg T_e \)
Magnetic Reconnection: Sisyphus of the Plasma Universe

“The struggle itself …is enough to fill a man’s heart. One must imagine Sisyphus happy.”

---Albert Camus in *The Myth of Sisyphus (Le Myth de Sisyphe, 1942)*