Measuring snow characteristics with the dual-polarization Doppler on Wheels (DOW) radar during ASCII

Katja Friedrich¹, Bart Geerts², Josh Wurman³, Karen Kosiba³, Josh Aikins¹, Evan Kalina¹
¹ Department of Atmospheric and Oceanic Sciences (ATOC), University of Colorado, Boulder, CO
² Department of Atmospheric Science, University of Wyoming, Laramie, WY
³ Center for Severe Weather Research, Boulder, CO

1. Motivation
- What is the 3-dimensional structure of radar reflectivity and dual-polarization parameters in orographic snowstorms?
- How does atmospheric stability, wind speed, and liquid water content impact snowfall intensity and the 3-dimensional radar structure?
- Does glaciogenic cloud seeding of wintertime orographic snowfall modify radar parameters and effectively increase surface precipitation?

2. ASCII Field Experiment
- 17 Total IOPs
- January – March 2012
- Sierra Madre Mountain Range, WY
- AgI Cloud Seeding Experiment

3. Selected Instruments
- Mobile, Dual-Polarization X-band Doppler On Wheels (DOW-7) Radar
 Measures:
 1. Reflectivity (Z)
 2. Doppler velocity (V)
 3. Differential reflectivity (ZDR)
 4. Differential phase (DP)
 5. Co-polar Correlation Coefficient (ρHV)
- Microwave Radiometer
 Measures:
 1. Integrated Liquid Water Content (LWC)
 2. Integrated Water Vapor (WV)
 3. Temperature Profile
 4. Humidity Profile
- Microwave Rain Radar (MRR)
 Measures:
 1. Particle Fall Velocity Distribution
 2. Particle Size Distribution

4. What is the 3-dimensional structure of radar reflectivity and dual-polarization parameters in orographic snowstorms?

5. How does atmospheric stability, wind speed, and LWC impact snowfall intensity and the 3-dimensional radar structure?

6. Does glaciogenic cloud seeding of wintertime orographic snowfall modify radar parameters and effectively increase surface precipitation?

7. Preliminary Conclusions
- Precip increases near ridge of the mountain, indicating the presence of orographic forcing.
- Heaviest snowfall at leeward side; windward side higher reflectivities aloft.
- A high occurrence of oblate particles near ridge, likely high density, horizontally-oriented particles.
- Precip increases after frontal passage ~ 3HUTC, stable, no LWC, weaker winds, stratiform precip.
- Neutral stability, high LWC, and stronger winds with cellular precip structures prior to front.
- Strongest winds not correlated with heaviest snowfall.
- Heaviest snowfall at Battle Pass postfrontal during seeding period.
- No increase in cloud depth observed during seeding period.
- More convective precip structure during non-seeding period with high Z at higher altitudes.
- More stratiform precip structure during seeding period with highest Z at lower altitudes.

Acknowledgements
This research was sponsored by the American Meteorological Society Graduate Fellowship Program. We thank Paul Kalina of NCAR for providing quality controlled DOW-7 radar data as well as Lktor Landolt, Tom Bower, Map Bowsher, Mark Young for providing access to the precipitation data.

ETI Gauge Comparison
- All ETI Gauge Comparison
- 17 Total IOPs
- January – March 2012
- Sierra Madre Mountain Range, WY
- AgI Cloud Seeding Experiment

Battle Pass (DOW-7)

Dixon Airport